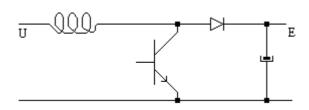

Hacheurs de courant :

 $\alpha = \text{Ton} / T$ Les diodes doivent être de type rapide, de préférence Schottky.

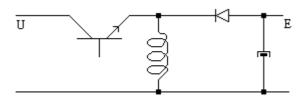
Hacheur série:


C'est un hacheur abaisseur.

En régime continu établi, $L\Delta I = Toff.E = Ton.(U - E)$ donc $L\Delta I = (1 - \alpha)T.E = \alpha T(U - E)$ donc :

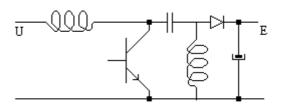
- $E = \alpha U$
- $L\Delta I = (1 \alpha)T\alpha U$

A fréquence constante, l'ondulation est maximale pour $\alpha = \frac{1}{2}$.


Hacheur parallèle:

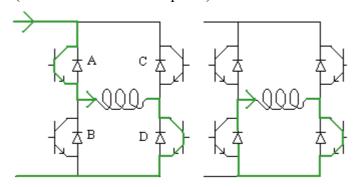
C'est un hacheur élévateur : $E = U/(1 - \alpha)$

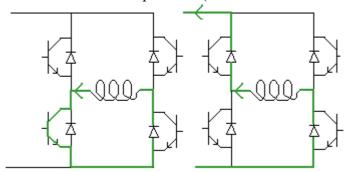
E est forcément supérieure à U. Sans régulation et à vide, E devient infinie!!


Hacheur inverseur:

$$E = U\alpha / (\alpha - 1)$$

Dans cet exemple E est négatif. Sans régulation et à vide, E devient infinie!!

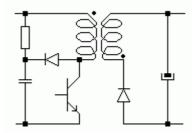

Buck-boost (sepic):


Inductances avec ou sans couplage.

Pont en H:

Moteur = hacheur série (ici le courant est haché par A) :

Freinage par inversion du courant = hacheur parallèle (même sens de rotation) :

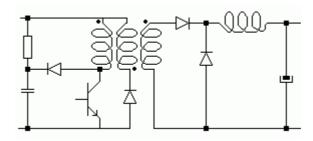


Pour cela, l'alim doit être réversible!!

Pour changer le sens, faire la symétrie...

Alimentations à découpage :

Alimentation Flyback:



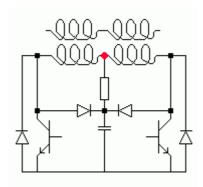
Magnétisation par le primaire, puis démagnétisation dans le secondaire.

 $\Phi = U.Ton / N1 = E.Toff / N2$

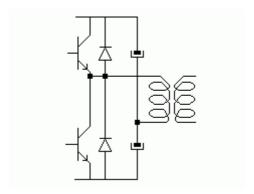
En valeurs max : $R\Phi = N1.I1 = N2.I2$

<u>Alimentation Forward:</u>

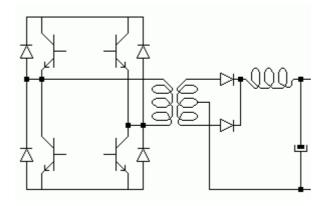
L'enroulement du milieu sert à la démagnétisation.


$$\Phi / U = Ton / N1 = Toff / N2$$

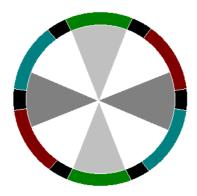
Le courant dans le primaire se décompose en :


- un courant magnétisant Im (qui peut se mesurer à vide)
- un courant proportionnel au courant dans le secondaire (N1.I1 \approx N3.I3)

En valeurs max, $R\Phi = N1.Im = N2.Id$


Alimentation Push-pull:

Alimentation en demi pont:



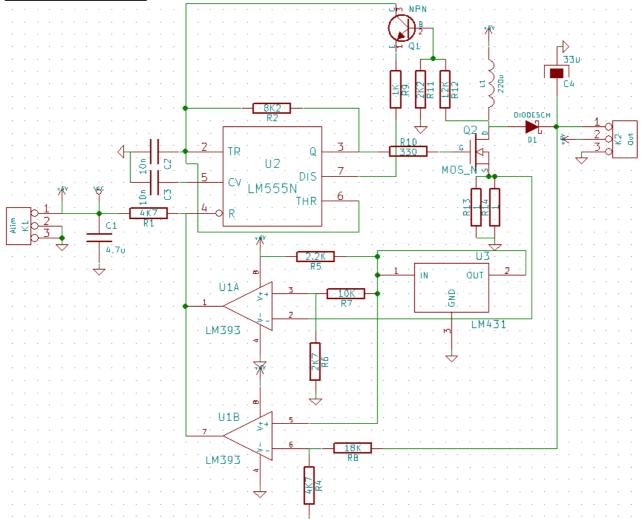
Alimentation à pont complet :

Cette dernière fonctionne avec des tensions en quadrature. On peut utiliser des mosfets canal N avec des IR2110 à 20kHz. Les IGBT offrent moins de pertes statiques à partir de 600V. On peut utiliser une PFC avec par exemple un L6562.

Brushless, mcc:

Tension induite:

 $E{=}n\varphi/\tau$ avec $\varphi{=}Blr\theta$ et $\theta{=}\omega\tau$ donc $E{=}nBlr\omega$ (pour 1 bobine).


Pour que le moteur tourne vite, il faut peu de spires, et une taille réduite.

Couple électro-magnétique :

E=Kw et EI=Cw donc C=KI=nBlrI

La section des fils n'intervient pratiquement pas sur le couple (nombre d'Ampère-tours).

Boost à TLC555

